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We analyze a lattice model closely related to the one-dimensional inelastic gas with periodic boundary
condition. The one-dimensional inelastic gas tends to form high density clusters of particles with almost the
same velocity, separated by regions of low density; plotted as a function of particle indices, the velocities of the
gas particles exhibit sharp gradients, which we call shocks. Shocks and clusters are seen to form in the lattice
model too, although no true positions of the particles are taken into account. The locations of the shocks in
terms of the particle index show remarkable independence on the coefficient of restitution and the sequence of
collisions used to update the system, but they do depend on the initial configuration of the particle velocities.
We explain the microscopic origin of the shocks. We show that dynamics of the velocity profile inside a cluster
satisfies a simple continuum equation, thereby allowing us to study cluster-cluster interactions at late times.
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I. INTRODUCTION

Dynamics of granular fluids has captured a lot of attention
from theoretical physicists for the last few years. In a theo-
rist’s model, the constituent particles of a granular fluid, usu-
ally considered to be hard spheres of finite radii, irretrievably
dissipate kinetic energy via inelastic binary collisions and
interparticle frictional forces. As a result, unlike the micro-
scopic models for the classical kinetic theory of gases, a
granular fluid that is not driven by external forces “cools
freely.”

Even in the absence of frictional forces, in a stark contrast
to hard sphere fluids with elastic interparticle binary colli-
sions, such a simplified model of granular fluids exhibits
complex behavior at macroscopic scales. In its simplest
form, a freely cooling initially homogeneous and isotropic
(both in the particles’ position and velocity space) inelastic
gas spontaneously forms nontrivial structures in the macro-
scopic velocity as well as in the macroscopic density field of
the gas. A large number of studies, mostly from the point of
view of inelastic hydrodynamics, have been carried out to
understand the onset for the formation of these structures in
two and three dimensions(Refs. [1–7] to cite a few). The
(qualitative and quantitative) picture that has emerged from
these studies is that in two and three dimensions, the system
of inelastic hard spheres suffers from inherent long-
wavelength linear instabilities. When the system size allows
such long wavelengths to be present, these instabilities start
to generate inhomogeneities in the macroscopic velocity and
the density field of the gas. In the subsequent evolution,
these inhomogeneities interact nonlinearly to give rise to
macroscopic structures and the entire system evolves into a
collection of densely populated clusters that are separated by
regions containing particles at very low density[1,8]. At late
times, the clusters collide in a very complex manner and
merge—a phenomenon that is known as coarsening in the
literature[9,10].

The late time evolution of a freely cooling inelastic gas is
thus qualitatively completely different from the linear insta-
bility mechanisms at early times. However, although a very
large number of studies have been devoted to kinetic theory

of freely cooling inelastic gases in two and three dimensions,
due to the difficulties associated with the nonlinearities in the
behavior of individual clusters and cluster-cluster collisions,
a proper theoretical understanding of the long-time dynamics
of freely cooling inelastic gases has remained elusive. The
existing results have only been numerical[3,9–13].

At the other extreme, fully analytical solutions have been
found for completely inelastic(or “sticky”) granular gas(of
point particles) in one dimension[14], and it has been shown
that the sticky gas in one dimension is described by the Bur-
gers equation in the inviscid limit[14]. In addition, a recent
experiment has also observed clustering in a one-
dimensional granular gas[15]. Due to dimensional reasons,
the dynamics of a granular gas in one dimension is qualita-
tively different from those in two or three dimensions(e.g.,
vortices cannot form, a strict ordering of particles from left
to right is maintained at all times), but structures are still
seen to form in the velocity and as well as in the density field
of the gas[16,17]. Ben-Naimet al. [17] have studied the
formation of these structures, and have conjectured that at
the long times, the behavior of a one-dimensional inelastic
gas should be the same as that of the sticky gas.

Our purpose in this paper is to unravel some of these
long-time phenomena at a more microscopic level in a
simple one-dimensional lattice model that has been intro-
duced in Refs.[18,19]. In this model, one considers a system
of N particles on the integral lattice positions(denoted byk)
of a ring of sizeN with initial velocities chosen randomly
from a uniform distribution inf−1,1g. The ordering of the
particles is maintained at all times; however, since the par-
ticles do not move in this lattice model, the velocities of the
particles are not the time derivative of their positions. In-
stead,vk, the velocity of thekth particle, is simply a scalar
quantity associated with thekth particle, andvk changes only
when thekth particle participates in a collision with one of
its neighbors according to the following collision rule. At a
collision betweenkth andsk+1dth particles at any time, the
postcollisional velocitiesvk,sk+1d

s+d are related to their precolli-

sional velocitiesvk,sk+1d
s−d by
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vk,sk+1d
s+d = vk,sk+1d

s−d ±
1 + r

2
fvsk+1d

s−d − vk
s−dg, s1d

where 0ø r ø1 is the coefficient of restitution. Time is mea-
sured by the average number of collisions per particle in this
lattice model.

In this paper, we will consider two variants of this lattice
model, namely the “random lattice model” and the “system-
atic lattice model.” Both obey the collision rule(1), but they
differ in the way a colliding pair of particles is chosen to
update the system. For the random lattice model, at any up-
date, the colliding pair of particles are chosen randomly from
all particles that momentarily satisfy the kinetic constraint
vk+1−vk,0. On the other hand, for the systematic lattice
model, the colliding pair of particles are the ones that have
the momentary global minimum value ofvk+1−vk.

The random lattice modelwithout kinetic constrainthas
already been studied as part of a larger class of models, the
inelastic Maxwell models[20], in which the collision fre-
quency is chosen to be independent of the incoming veloci-
ties of colliding particles. For that model, it has been analyti-
cally shown that correlations develop with a diffusively
growing correlation length, which consequently affects the
temperature decay rate. In addition, the inelastic lattice
model in one dimensionwith the kinetic constraint, which
we study here, was also analyzed in Refs.[18,19] in terms of
velocity distribution and structure factors[21]. It is however
important to realize the difference between these existing
results and the ones reported in this paper: the existing re-
sults mainly concern global quantities, while in this paper,
our main thrust is to study the behavior of the microscopic
inhomogeneities arising from the kinetic constraint.

The key feature of both variants of the lattice model with
kinetic constraint studied here is that an initial configuration
of random velocities of the particles soon develops distinct
spatial structures, eventually leading tolarge positive sharp
jumps in the particle velocities intersparsed with relatively
smooth variations. We refer to the large positive sharp jumps
in the velocity field asshocksand the region between two
consecutive shocks, where the velocity variations are
smooth, asclusters. These structures have already been ob-
served in Ref.[18], but have not been fully analyzed. For-
mation of shocks and the subsequent dynamics of the clus-
ters make the lattice model interesting on its own, but its
relevance is realized only when the locations of its shocks in
vskd profile are compared to those of the one-dimensional
inelastic gas[14,17] (see Fig. 1). By contrast, there are no
shocks in the one-dimensional random lattice model without
kinetic constraints[20].

This paper is organized in the following manner: in Sec.
II, we discuss the generic features of the lattice model and
explore its connections with the one-dimensional inelastic
gas[14,17]. In Sec. III, we analyze the formation of shocks
at early times and cluster dynamics at late times. We finally
end the paper with a short discussion in Sec. IV.

II. GENERIC FEATURES OF THE LATTICE MODEL

A. Phenomenology of shock development and the subsequent
dynamics for the random lattice model

To start with, in Fig. 2, we show a time sequence of the
velocity profilevskd for the random lattice model of 10 000

particles withr =0.7. The initial configuration[Fig. 2(a)] is
created by choosingvk randomly from a uniform distribution
in f−1,1g. As can be seen in Fig. 2(b), velocity correlations
set in very rapidly(within ten collisions per particle). After
104 collisions per particle, shocks and clusters can be clearly
identified [Fig. 2(c)]. According to the kinetic constraint,
neighboring particles cannot collide across a shock, and as a
result, each cluster evolves independently of the others, until
two neighboring clusters collide and coalesce to form a new
bigger cluster[this mechanism is illustrated by the evolution
of velocity profile of Fig. 2(c) to that of 2(d); Fig. 2(d) cor-
responds to a state after 106 collisions per particle].

FIG. 1. Comparison of the shock locations on a ring of sizeN as
a function of particle positionsk,k=1,2, . . . ,N: (a) a snapshot of
one-dimensional inelastic gas[17] for r =0.3, (b) a similar snapshot
of the random lattice model forr =0, (c) a snapshot of the system-
atic lattice model. All systems had identical initial positions and
velocities of the particles. Visual inspection shows that the locations
of the (relative) large shocks are aligned almost perfectly. The scale
in the y direction is arbitrary.

FIG. 2. An example time sequence of shock developments for a
system of 10 000 particles in the random lattice model:(a) Initial
profile (randomly chosenvk from a uniform distribution inf−1,1g),
(b) after ten collisions per particle,(c) after 104 collisions per par-
ticle, (d) after 106 collisions per particle. The largestuvk1
−vk2

u∀k1,k2 have been scaled to unity in each graph.
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From the above phenomenological description, one can
identify two separate regimes: the initial homogeneous re-
gime, and the subsequent clustered regime at late times. To
make the evolution of the system from one regime towards
the other quantitatively more precise, we notice that it corre-
sponds to a symmetry breaking of the probability distribution
PsDvk,td of relative velocitiesDvk=vk+1−vk. Initially, for
eachk, the distribution ofvk is uniform in f−1,1g (i.e., a
“box” distribution). Naturally, PsDvk,t=0d is a piecewise
linear distribution onf−2,2g (a “triangular” distribution),
symmetric aroundDvk=0. Under the effect of the dynamics,
this symmetry is not preserved. This is easily understood
from the fact that only the neighboring particle pairs with
Dvk,0 can collide, and after a collision between thekth and
sk+1dth particles,Dvk−1, Dvk, and Dvk+1 change in a way
that, in general, does not preserve the symmetry ofPsDvk,td.
As this process continues, from phenomenological consider-
ations, we know that a few shocks remain at late times. Now,
since shocks correspond to large values ofDvk, this means
that in the clustered regime, the probability to have a large
positive value ofDvk is expected to be greater than that of a
correspondingly large negative value.

To detect the locations of the shocks by following the
evolution ofPsDvk,td as a function of time, one can identify
the locationk of a shock by requiringDvk.CuminjDv ju,
whereC.0 is a constant. The choice of the numerical value
of C is arbitrary, and this arbitrariness can be used to tune the
minimum value thatDvk must have in order to qualify for a
shock. Furthermore, if one defines the instanttp when the
system passes from one regime to the other by the minimal
time where at least one shock becomes visible, then the
above requirement can also be used to characterizetp. Of
course, the precise value oftp depends on the chosen value
of C.

In the clustered regime, due to inelastic collisions, the
amplitude of the velocity profile within each cluster de-
creases, and the velocities of the particles approach that of
the center of mass of the cluster itself. This process continues
for a while until two neighboring clusters with center-of-
mass velocitiesVj and Vj+1 collide and coalesce and the
shock separating them disappears[at timet, if we number the
clustersj =1,2, . . . ,j1std from the left to the right, then such
a cluster-cluster collision takes place only ifVj .Vj+1]. Pre-
cisely this mechanism is responsible for making the velocity
profile of Fig. 2(c) evolve to that of Fig. 2(d).

At very late times, due to periodic boundary condition,
only a single cluster survives. Its amplitude also decreases in
time, and the velocities of all particles asymptotically con-
verge to the center of mass velocity of the whole system.

B. Dependence on the coefficient of restitution for the random
lattice model

One of the first questions that one can ask for the lattice
model is what is the effect of inelasticity on the clustering
properties of the system. Clearly, forr =1, the collisions are
elastic, and upon collision, the velocities of two neighboring
particles are simply interchanged. Such a dynamics cannot
lead to clustering or any structure formation.

On the other hand, our simulations show that the lattice
model exhibits clustering for any value ofr smaller than 1,
and it is onlytp defined in Sec. II A that becomes an increas-
ing function of r. The most remarkable observation, how-
ever, is that for a given initial velocity configuration of the
particles, not only the locations of the shocks persisting at
late times are the same for allr, but also the macroscopic
velocity profiles are nearly independent ofr. If we consider
the macroscopic velocity profile of the lattice model with a
coefficient of restitutionr1 at a timet1 well into the clustered
regime, then for anyr2. r1 (originating from the same initial
velocity configuration of the particles) there exists a time
t2, t1, for which the two macroscopic velocity profiles are
almost the same(see Fig. 3). Effectively, this implies that for
all r, the dynamical behavior of the system is identical to that
for r =0 at late times. We also observe that at intermediate
times, the maximum number of shocks(and correspondingly,
clusters) in the system are observed forr =0 (see Sec. III A
in this regard).

C. Dependence on the order of collisions and on the initial
velocity configuration of the particles

The next important question one can ask is if notr, ex-
actly what influences the positions of the shocks?A priori,
one expects that the locations of the shocks and the long-
time dynamics of the system depend on the initial velocity
configuration of the particles, as well as on the sequence in
which the collisions are performed.

Surprisingly however, the locations of the shocks depend
only on the initial configuration of the particles’ velocities,
e.g., two different random collision sequences result in the
same locations of the shocks. On the other hand, the variant
of the lattice model(random or systematic) determines the
macroscopic shape of the velocity profile inside the clusters.
To demonstrate this phenomenon, starting from the same ini-
tial velocities of the particles, we simulated both the random
and the systematic lattice models and compared the locations
of the shocks(see Fig. 1).

D. Relation between the lattice model and one-dimensional
inelastic gas

The empirical observations in the preceding sections sug-
gest that so long as one is only interested in the velocity

FIG. 3. Velocity profiles for the random lattice model of 5000
particles: (a) for r =0.7 after 104 collisions per particle(b) for r
=0.95 and 103 collisions per particle. The initial velocity configu-
rations of the particles were the same for both(a) and (b). Once
again, the largestuvk1

−vk2
u∀k1,k2 has been scaled to unity for both

profiles.
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profile vskd, a close relation exists between the one-
dimensional inelastic gas and the lattice model from the fol-
lowing consideration: the dynamics of a one-dimensional in-
elastic gas for a given initial configuration is completely
deterministic — after any collision, the next colliding pair is
automatically determined by the instantaneous minimal
value ofsxk+1−xkd / svk−vk+1d, for vk−vk+1.0. In this sense,
one can view the one-dimensional inelastic gas as a variant
of the lattice model too, where the colliding particles are
chosen in a very complicated manner. Section II C then in-
dicates that for a given initial configuration of the particles’
velocities as a function of the particle index, the locations of
the shocks in the one-dimensional inelastic gas and those in
the lattice model are the same. That this is indeed the case is
numerically verified in Fig. 1.

In our simulations of the one-dimensional inelastic gas,
we followed the procedure outlined in Ref.[17], namely that
to avoid the inelastic collapse, the collisions were taken to be
elastic when the relative velocities between the neighboring
particles are smaller than a given cutoff. Our results confirm
the existence of “Burgers” shocks in thevsxd profile [17].
More importantly, we note that for the one-dimensional in-
elastic gas,there is an inverse correspondence of shocks and
clusters between thisvsxd and vskd profile — each shock in
the vsxd profile [i.e., a large particle density nsxd] corre-
sponds to a cluster in thevskd profile and the shocks in the
vskd profile correspond to regions with finite gradients in
vsxd.

III. ANALYSIS

A. Development of shocks

The lesson that we learned from Sec. II is that the loca-
tions of the shocks in this lattice model are essentially deter-
mined from the initial configuration of the particles’ veloci-
ties. This immediately gives rise to the following question:
how can one predict the locations of the shocks seen at early
times from the initial velocity configuration of the particles?

As it turns out, most of the shocks observed in the clus-
tered regime already exist att=0. These are the locations
marked by large positive jumps in thevskd profile between
two neighboring lattice sites att=0, surrounded by relatively
small velocity variations. To illustrate this point, we present a
schematic diagram for such a velocity profile for a few par-
ticles in Fig. 4. In the subsequent dynamics at short times,
the particles on the right ofB and on the left ofA collide
with each other and “thermalize”(i.e., the velocity variations
reduce due to inelasticity), but this thermalization may not
necessarily convert a relatively largevB−vA.0 to vB
−vA,0 quickly enough to make theA and B collide. In
other words, such a large positive jump remains preserved
and may eventually give rise to a shock.

To check if such a scenario is correct or not, one needs to
identify the locations of such large positive jumps in the
initial vskd profile, and contrast them with the observed lo-
cations of the shocks at early times. A convenient way to
single out such jumps[say, in Fig. 2(a)] is to define as2n
+1d coarse grained velocity profilev̄skd=oi=k−n

k+n vi / s2n+1d of

the particles, which, roughly speaking, can single out one
such large jump over the surrounding small velocity varia-
tions in a window ofs2n+1d lattice sites in thev̄skd profile.
Having fine-tunedn, a surprisingly close match between the
observed shock locations at early times and the initial con-
figuration of the particles’ velocities can be found(see Fig.
5).

Notice, however, in Fig. 5 that not all the large jumps in
the initial configuration of the particles’ velocities have
turned out to be shocks at a later time. Indeed, in general,
whether such an initial large positive jump at a particular
location develops into a shock or not really depends on the
magnitude of the jump itself in relation to particle velocities
in its immediate vicinity, and as well as on the coefficient of
restitutionr. In this regard, the dependence on the coefficient
of restitution is not difficult to understand, asr quantifies the
“transport of velocity” between two colliding particles. Intu-
itively speaking, an inelastic collision between two neighbor-
ing particles can be viewed as a combination of dissipation
(thermalization) and transport of velocities. Forr =1 only
transport of velocities can take place. At the other limit, for
r =0, there is no transport of velocities but only dissipation.
As a result, forr =0, small velocity variations around any
large jump thermalize immediately, leading to an early ap-
pearance of the clustered regime, and a large number of ini-
tial jumps end up becoming shocks. With increasingr, some
of the initial large positive jumps are eliminated by transport
of velocities, and the clustering regime, with a smaller num-
ber of selected shocks(and clusters), appears later.

The appearance of the shocks at the locations where rela-
tively large positive jumps exist is therefore caused by the

FIG. 4. A schematic diagram of the initial velocity profile for a
few particles to explain the development of shocks.

FIG. 5. Correspondence between the coarse grained velocity
profiles v̄skdsn=7d for r =0 for the random lattice model of 1000
particles. Gray curve corresponds tot=0 and the black curve rep-
resents early shocks. The scale in they direction is arbitrary.
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thermalization of the smaller velocity variations around these
jumps—due to thermalization, the smaller velocity variations
become even smaller, but the large positive jumps remain
preserved under the dynamics. In relation to their surround-
ings, the magnitude of these large jumps thus starts to grow
in time. Such a scenario applies independently of the details
of the model, and gives a qualitative explanation for the ob-
servation that starting from a given initial configuration,
shocks appear at the same locations in thevskd profile for
both variants of the lattice model and as well as for the
one-dimensional inelastic gas[14,17]. Moreover, it also
clearly demonstrates that the shock formation “instability” in
the vskd profile in all these models is a “relative instability”
and not an “absolute” one. Such behavior has also been
found in the(long-wavelength) linear instability of the mac-
roscopic flow field for two- and three-dimensional inelastic
gases(see Refs.[1,4,7] for example).

B. Cluster dynamics

1. Dynamics within a single cluster

Once the shocks develop, our simulations show that for a
given variant of the lattice model, the velocity profile within
each cluster has the same characteristic macroscopic shape.
For the deterministic lattice model, this shape is simply lin-
ear with a negative slope. Although we cannot provide an
analytical derivation of this shape, if we interpret the dynam-
ics along the lines that at each updating step of a cluster, two
neighboring particles collide at the location where thevk+1
−vk is minimum(which is a mechanism that tries to align all
vk+1−vk values to its maximum value within each cluster),
then the linear profile appears to be intuitively reasonable.

For the random lattice model, however, the slope of the
macroscopic velocity profile is smoothly varying, as can be
seen in, e.g., Fig. 2(d) [occasionally, flat profiles can be ob-
served too, but for the time being, we leave them for Sec.
III B 2 ]. It turns out that the functional form of the smooth
macroscopic velocity profile can be obtained through a
mean-field approach by averaging over an ensemble of ran-
dom collision sequence realizations within a cluster, as we
describe below.

The idea behind this mean-field approach is the following:
we consider a cluster ofM particles, and denote the velocity
of the kth particle at timet, averaged over random collision
sequences, bykvkstdl. From the very definition of a cluster in
the Introduction, we assume thatkvk+1stdl−kvkstdl,0 at all
times. Thereafter, as we observe from direct simulation mea-
surements that the probability of collisions between any two
neighboring particle pairs is equally likely, in this mean-field
approach,kvkstdl is easily seen to satisfy the equation

kvkst + 1dl = s1 − 2pdkvkstdl + pfkvkstdl − «hkvkstdl

− kvk−1stdljg + pfkvkstdl + «hkvk+1stdl − kvkstdljg.

s2d

Here,p is an effective probability of a collision between any
two neighboring particles in this mean-field theory and«
=s1+rd /2. The three terms on the right-hand side of Eq.s5d,

respectively, originate from the events when thekth particle
is not involved in a collision, when there is a collision be-
tween thekth and thesk−1dth particle, and when there is a
collision between thekth and thesk+1dth particle. Since Eq.
s2d very simply reduces to

kvkst + 1dl = s1 − 2p«dkvkstdl + p«kvk−1stdl + p«kvk+1stdl,

s3d

the interesting point to note is that Eq.s3d is the discrete
sboth in space and timed form of the diffusion equation

] kvsk,tdl
] t

= Dsrd
]2kvsk,tdl

] k2 . s4d

Mean-field theory predictsDsrd=p«. One has to keep in
mind however that Eq. (4) holds only for monotonically de-
creasingkvsk,tdl as a function of k. A similar equation has
also been found in the one-dimensional lattice model without
the kinetic constraintf20g.

To solve Eq.(4), the macroscopic velocity profile of a
cluster at timet0 can be generally expanded in a Fourier
series. Since particle velocities are not transported across the
boundaries of a cluster,]kvkstdl /]k must vanish at the bound-
aries of a cluster, and the Fourier series contains only terms
~cosfp jkg. The amplitude of thej th such term decreases as

e−p2j2Dsrdst−t0d, so that for large values ofst− t0d, only the
slowest decay modej =1 survives. Hence at long times we
expectkvsk,tdl to be given by

kvsk,tdl = AstdcosFpk

M
G = Ast0de−p2Dsrdst−t0d/M2

cosFpk

M
G .

s5d

The mean-field results5d allows us to compare the half-
cosine form ofkvsk,tdl with the macroscopic velocity profile
of the particles within a cluster, as observed in the simulation
for the random lattice model. This comparison is shown in
Fig. 6sad—the fact that we cannot distinguish the simulation
data from the half-cosine shape ofkvsk,tdl as predicted by
Eq. s5d is an indication of how well the mean-field approach

FIG. 6. (a) Comparison of the half-cosine solution(3) (solid
line) and simulation data(open circles); the two are completely
indistinguishable from each other.(b) Numerically obtained depen-
dence ofDsrd on r for the random lattice model. The simulations
were carried out forM =1000. The scale along they axis for (a) is
arbitrary.Dsrd exhibits a singularity atr =1, which is in clear dis-
agreement with the mean-field theory prediction.
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works to describe the average shape of an isolated cluster. In
addition, by following the dynamics from the simulation, we
can also obtain an empirical functional form ofDsrd fshown
in Fig. 6sbdg.

There are two features of theDsrd vs r curve that require
further elaboration. The first one of them is thatDsrd is an
increasing function ofr, indicating that the amplitude of the
clusterAstd decreases faster asr increases. This observation
seems to contradict the fact that the dissipation decreases
with increasingr. The point to notice however is that the
mean-field approach really describes the time evolution
within a cluster in which]kvkstdl /]k,0. From that point of
view, the amplitude of the cluster decreases not only from
the dissipation, but also from transport of velocities. This is
easily seen from the fact that after a collision, the ordering of
the magnitudes of the velocities of the colliding particles are
simply exchanged, i.e., the particle on the right has a higher
velocity, which results in a local positive slope in thevskd
profile. For increasingr, transport of velocities becomes
more effective, and thus the negative slope of]kvkstdl /]k
within a cluster decays to zero faster. Only ifr =1, the ve-
locities of the particles within an isolated cluster order them-
selves in an increasing order of magnitude. However,Dsrd
has a singularity atr =1 and ther =1 case cannot be treated
within the scope of our mean-field theory. Second, from the
way we presented our mean-field approach, it may seem that
the r dependence ofDsrd can be obtained through the depen-
dence ofp and« on r. This is actually not true. The mean-
field approach(2) neglects fluctuations in the particles’ ve-
locities aroundkvsk,tdl, but in an actual simulation, these
fluctuations are very important as they decide the sign of
Dvkstd=vk+1std−vkstd for the particles within the cluster and
thereby control which collisions are possible and which are
not.

2. Interacting clusters for the random lattice model

With the background of Sec. III B 1, it is now clear that as
time progresses, the amplitude of each cluster present in the
random lattice model at late times effectively decays expo-
nentially as,expf−p2Dsrdst− t0d /M2g. Such a decay brings
the velocities of the particles within a cluster closer and
closer to the center-of-mass velocity of the cluster itself. Let
us assume that at timet0@1, there arej1 number of clusters
present in the whole system of the random lattice model. If
we number these clusters byj such thatj =1,2, . . . ,j1 and
denote the number of particles within the clusters, the ampli-
tudes of the clusters, and their velocities of their center of
masses, respectively, byMj, Aj, andVj, then with increasing
time, we observe the following dynamics.

(i) When Vj−1,Vj ,Vj+1, the shocks on the left and
on the right of thej th cluster cannot, respectively, be smaller
than Vj −Vj−1.0 andVj+1−Vj .0. In that case, the ampli-
tudeAj simply decreases to 0, forming a “flat” velocity pro-
file (see, e.g., Fig. 3).

(ii ) On the other hand, whenVj .Vj+1, the magnitude
of the shock between thej th and thes j +1dth clusters de-
creases to zero, and the two clusters coalesce together to
form a new bigger cluster in a finite time. For a given con-

figuration of clusters at timet, the mean-field theory of Sec.
III B 1 provides us with a way to measure the timet8= t
+Dtmin of the first coalescence of two clusters in the system.
In fact, Dtmin=minj Dtj, where for each pair of neighboring
clusterss j , j +1d with Vj −Vj+1.0, Dtj is obtained by solving
the equation

Aj+1st0dexpf− p2DsrdDtj/Mj+1
2 g

+ Ajst0dexpf− p2DsrdDtj/Mj
2g = Vj − Vj+1. s6d

Due to the fact that Eq.(6) is transcendental in nature, a
closed form analytical solution forDtj is impossible to ob-
tain, let alone the value ofDtmin. Nevertheless, Eq.(6) pro-
vides us with a glimpse of how complicated it is to theoreti-
cally study the cluster-cluster collisions and coalescence in
the random lattice model, and in general, in inelastic gases. If
two clustersl and l +1 are the first ones to coalesce(at time
t0+Dt1) in the random lattice model, then a new cluster with
Ml +Ml+1 particles and center-of-mass velocitysMlVl

+Ml+1Vl+1d / sMl +Ml+1d is formed. At timet0+Dt1, the shape
of the new cluster is different from a half cosine, but as the
mean-field theory of Sec. III B 1 suggests, very soon the
shape of the new cluster converges to a half cosine, unless
the newly formed cluster collides with another one in the
meantime.

3. A “hydrodynamic” description of the random lattice model

So far, we have analyzed the system-wide properties of
shocks and clusters. We have also seen that there exists an
effective dynamics in terms of diffusion equations(4) and(5)
within a single cluster. Based on this collected wisdom on
the random lattice model so far, one can naturally ask if it is
possible to express the system-wide properties of shocks and
clusters in terms of an effective(hydrodynamic) equation.

It turns out that indeed such an equation can be con-
structed for the random lattice model:

] v
] t

= DsrdfQs− =+vd=+v − Qs− =−vd=−vg, s7d

whereQ denotes a unit step function,s=+vdk=vk+1−vk, and
s=−vdk=vk−vk−1 are the discrete gradients operating to the
right and left, respectively, and] /]t the discrete time gradi-
ent. It is important to stress that in a numerical implementa-
tion of Eq. s7d, all pairs of particles with negative relative
velocities collidesimultaneouslyin a unit time step. The
main difference between the numerical implementation of
Eq. s7d and the random lattice model lies in the order of the
collisions, but in the light of the previous results, we expect
to find the shocks at the same locations. Moreover, inside a
given cluster, Eq.s7d reduces to Eq.s4d, so that the cluster
velocity profiles should be the same as in the random lattice
model.

Indeed, we find that the macroscopic velocity profile ob-
tained numerically from Eq.(7) compares very well with the
actual computer simulation results of the random lattice
model (see Fig. 7), as expected.
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IV. DISCUSSION

In this paper, we have extensively studied structure for-
mation and their dynamics in a one-dimensional inelastic
lattice model for granular gases. These structures appear in
the form of clusters separated by shocks. The locations of the
shocks in this lattice model at early times are decided from
the initial configurations of the particles’ velocities in a very

robust manner. In order to predict the locations of the shocks,
we have demonstrated a procedure to process the initial ve-
locity configuration data of the particles, and this procedure
works equally well also for the one-dimensional inelastic gas
[14,17]. The coefficient of restitution does play a role to
decide which of the large jumps in the particles’ velocities at
early times yield shocks, but at late times, the macroscopic
velocity profile for a given model with a given initial con-
figuration of the particles’ velocities is independent of the
coefficient of restitution.

Thus, we observe that in terms of detailed structure for-
mation, systems with anyr ,1 “flow” towards the sticky
limit r =0. Such “universality” has been found in Ref.[17] in
terms of global quantities, while our results suggest that a
broader universality holds for microscopic quantities, such as
the locations of shocks(when the same initial velocity con-
figuration is considered).

In addition, for the random lattice model, we have also
studied the dynamics of an isolated cluster and cluster-cluster
collisions in detail and obtained an effective hydrodynamic
equation. We hope that the analyses presented here can be
successfully used to study coarsening problems in realistic
granular gases(i.e., in two or three dimensions).
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