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Clustering in a one-dimensional inelastic lattice gas
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We analyze a lattice model closely related to the one-dimensional inelastic gas with periodic boundary
condition. The one-dimensional inelastic gas tends to form high density clusters of particles with almost the
same velocity, separated by regions of low density; plotted as a function of particle indices, the velocities of the
gas particles exhibit sharp gradients, which we call shocks. Shocks and clusters are seen to form in the lattice
model too, although no true positions of the particles are taken into account. The locations of the shocks in
terms of the particle index show remarkable independence on the coefficient of restitution and the sequence of
collisions used to update the system, but they do depend on the initial configuration of the particle velocities.
We explain the microscopic origin of the shocks. We show that dynamics of the velocity profile inside a cluster
satisfies a simple continuum equation, thereby allowing us to study cluster-cluster interactions at late times.
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I. INTRODUCTION of freely cooling inelastic gases in two and three dimensions,

Dynamics of granular fluids has captured a lot of attentiordue to the difficulties associated with the nonlinearities in the
from theoretical physicists for the last few years. In a theoPehavior of individual clusters and cluster-cluster collisions,
rist's model, the constituent particles of a granular fluid, usu-a proper theoretical understanding of the long-time dynamics
ally considered to be hard spheres of finite radii, irretrievablyof freely cooling inelastic gases has remained elusive. The
dissipate kinetic energy via inelastic binary collisions andexisting results have only been numerigaj9-13.
interparticle frictional forces. As a result, unlike the micro- At the other extreme, fully analytical solutions have been
scopic models for the classical kinetic theory of gases, aound for completely inelasticor “sticky”) granular gagof
granular fluid that is not driven by external forces “cools point particlesin one dimensiori14], and it has been shown

freely.” that the sticky gas in one dimension is described by the Bur-

Even in the absence of frictional forces, in a stark contrasbers equation in the inviscid lim[t.4]. In addition, a recent
to hard sphere fluids with elastic interparticle binary colli- experiment has also observed clustering ’in a one-

zlc?rzs’Ief(u%th\zgrr]pg{leriar:r%dsilo 0|fc gsrggluelgr :‘Lu'?tz imﬁ'; imensional granular gg45]. Due to dimensional reasons,
formp a freely cooling initiall hoF;no eneou.s and isotrop ic,C dynamics of a granular gas in one dimension is qualita-
' y 9 y 9 P tively different from those in two or three dimensio¢esg.,

(both in the particles’ position "’_‘”_d velocity scheelasUc vortices cannot form, a strict ordering of particles from left
gas spontaneously forms nontrivial structures in the macro;

scopic velocity as well as in the macroscopic density field ofto right is maintained at all timgsbut structures are still

the gas. A larae number of studies. mostly from the point of €& to form in the velocity and as well as in the density field
1€ gas.. ge . ’ y € b of the gas[16,17. Ben-Naimet al. [17] have studied the
view of inelastic hydrodynamics, have been carried out t

understand the onset for the formation of these structures ?{‘%)rmation of these structures, and have conjectured that at
two and three dimension&efs. [1-7] to cite a few. The he long times, the behavior of a one-dimensional inelastic

(qualitative and quantitatiyepicture that has emerged from gas should be th.e same as thqt of the sticky gas.

these studies is that in two and three dimensions, the syste Our purpose in this paper is to “T"ave' Some of these

of inelastic hard spheres suffers from inher’ent Iong-Pc?ng'tlme phenomgna at a more microscopic level na
simple one-dimensional lattice model that has been intro-

wavelength linear instabilities. When the system size allowsd ced in Refs[18,19. In this model, one considers a system

O Vel e e, e eteiies Sl N paricieson the integral e postoreroled bk
9 9 P Y f a ring of sizeN with initial velocities chosen randomly

the depsny field of.the.gas. In the_subsequent' evollutlonfrom a uniform distribution in-1,1]. The ordering of the
these inhomogeneities interact nonlinearly to give rise to

macroscopic structures and the entire system evolves into %algflgcs) Lsotrnrr?:)n\leinne(tjhgtIgiltigem?nsc; dr:ecl)vzﬁ\e/:e\:’e-lilgi?ii Sth; tphaer-
collection of densely populated clusters that are separated 6articles are not the time derivative O’f their bositions. In-
regions containing particles at very low dendity8]. At late P '

times, the clusters collide in a very complex manner anaStead'.vk' the v_elocity .Of thekth pa_rticle, is simply a scalar
merge—a phenomenon that is known as coarsening in thauantity assomatt_ad with t.”‘.*h part|_cle, and{k.changes only
literature[9,10]. yvhen.thekth partlcle_partlupates ina colhsu_)r! with one of

The late time evolution of a freely cooling inelastic gas isItS nglghbors according to the followlng collision rule. Ata
thus qualitatively completely different from the linear insta- coII|5|on_ petweth _a_1nd((+k)+ 1th particles at an)_/ time, th_e
bility mechanisms at early times. However, although a veryPoStcollisional velocities, ., are related to their precolli-
large number of studies have been devoted to kinetic theorgional veIocitiea;(k’_()m) by
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1+r v(k)}
Uﬁf()ku) = UE(,(k+1) t T[ngll) -], (1)
where Osr =<1 is the coefficient of restitution. Time is mea-
sured by the average number of collisions per particle in this
lattice model. \'\
In this paper, we will consider two variants of this lattice (b)

model, namely the “random lattice model” and the “system-
atic lattice model.” Both obey the collision ru{&), but they
differ in the way a colliding pair of particles is chosen to
update the system. For the random lattice model, at any up- (©)
date, the colliding pair of particles are chosen randomly from
all particles that momentarily satisfy the kinetic constraint -

V1~ v<0. On the other hand, for the systematic lattice k
model, the colliding pair of particles are the ones that have . . .
the momentary global minimum value of,;-v,. FIG. 1. Comparison of the shock locations on a ring of dizas

The random lattice modakithout kinetic constrainhas @ function of particle positionk,k=1,2,... N: (a) a snapshot of
already been studied as part of a larger class of models, tHg1€-dimensional inelastic g§&7] for r=0.3,(b) a similar snapshot
inelastic Maxwell modelg20], in which the collision fre-  ©f the random lattice model far=0, (c) a snapshot of the system-
quency is chosen to be independent of the incoming velocidtic Ig@tlce model. AII systems k_lad |de_nt|cal initial positions gnd
ties of colliding particles. For that model, it has been anaWti_velocntles o_f the particles. Visual inspection shows that the locations
cally shown that correlations develop with a diffusively pf the(rel_atlve_ Iarge shpcks are aligned almost perfectly. The scale
growing correlation length, which consequently affects then they direction is arbitrary.

temperature decay rate. In addition, the inelastic lattice . . I . I .
model in one dimensiomvith the kinetic constraiptwhich ~ Particles withr=0.7. The initial configuratioriFig. 2@)] is

we study here, was also analyzed in R§f8,19 in terms of _created by choosing rando_mly_from a unifqrm distribl_Jtion
velocity distribution and structure factof®1]. It is however in [-1,1]. As can be seen in Fig.(t), velocity correlations
important to realize the difference between these existinget in very rapidly(within ten collisions per particle After
results and the ones reported in this paper: the existing reL0* collisions per particle, shocks and clusters can be clearly
sults mainly concern global quantities, while in this paper,identified [Fig. 2c)]. According to the kinetic constraint,
our main thrust is to study the behavior of the microscopicneighboring particles cannot collide across a shock, and as a
inhomogeneities arising from the kinetic constraint. result, each cluster evolves independently of the others, until

The key feature of both variants of the lattice model withtwo neighboring clusters collide and coalesce to form a new
kinetic constraint studied here is that an initial configurationbigger clustefthis mechanism is illustrated by the evolution
of random velocities of the particles soon develops distincbf velocity profile of Fig. Zc) to that of 2d); Fig. 2d) cor-

spatial structures, eventually leadingléwge positive sharp  responds to a state after®léollisions per particle
jumps in the particle velocities intersparsed with relatively

smooth variationsWe refer to the large positive sharp jumps
in the velocity field asshocksand the region between two
consecutive shocks, where the velocity variations are
smooth, aglusters These structures have already been ob-
served in Ref[18], but have not been fully analyzed. For-
mation of shocks and the subsequent dynamics of the clus-
ters make the lattice model interesting on its own, but its
relevance is realized only when the locations of its shocks in
v(k) profile are compared to those of the one-dimensional
inelastic gaq14,17 (see Fig. 1L By contrast, there are no
shocks in the one-dimensional random lattice model without 1+ 1
kinetic constraint§20]. K

1-

v(k)

0 ®) k

This paper is organized in the following manner: in Sec.
Il, we discuss the generic features of the lattice model and v(k)
explore its connections with the one-dimensional inelastic '
gas[14,17. In Sec. lll, we analyze the formation of shocks “
at early times and cluster dynamics at late times. We finally 0 0
end the paper with a short discussion in Sec. IV. ) k @ «

Il. GENERIC FEATURES OF THE LATTICE MODEL FIG. 2. An example time sequence of shock developments for a
system of 10 000 particles in the random lattice moda)l:Initial
profile (randomly chosem from a uniform distribution if-1, 1]),
(b) after ten collisions per particlgg) after 1 collisions per par-

To start with, in Fig. 2, we show a time sequence of theticle, (d) after 1¢ collisions per particle. The largesiy,
velocity profilev(k) for the random lattice model of 10 000 -uvy|Uky, k; have been scaled to unity in each graph.

A. Phenomenology of shock development and the subsequent
dynamics for the random lattice model
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From the above phenomenological description, one can 1] 14
identify two separate regimes: the initial homogeneous re-
gime, and the subsequent clustered regime at late times. To v(©) v(k)

make the evolution of the system from one regime towards
the other quantitatively more precise, we notice that it corre-
sponds to a symmetry breaking of the probability distribution
P(Avy,t) of relative velocitiesAv,=vy,1—vy. Initially, for
eachk, the distribution ofv, is uniform in[-1,1] (i.e., a
“box” distribution). Naturally, P(Av,,t=0) is a piecewise
linear distribution on[-2,2] (a “triangular” distribution, F_IG. 3. Velocity profiles for the ra_ndom lattice model of 5000
symmetric around\v,=0. Under the effect of the dynamics, particles: (a) for r_:(_).7 after 16 (_:oII|S|ons per partlcle_(b) for r
this symmetry is not preserved. This is easily understoo&o_'gs and 19 coII|_5|ons per particle. The initial velocity configu-
from the fact that only the neighboring particle pairs with "ations of the particles were the same for beahand (b). Once
Av, <0 can collide, and after a collision between ttle and 293" the largesby, ~v| [k, k; has been scaled to unity for both
(k+1)th particles,Avyq, Avy, and Avy,; change in a way profiles.
that, in general, does not preserve the symmetiy(dfv,,1). ) ) .
As this process continues, from phenomenological consider- On the other hand, our simulations show that the lattice
ations, we know that a few shocks remain at late times. NowM0del exhibits clustering for any value ofsmaller than 1,
since shocks correspond to large valuesiof, this means gnd it is qnlytp defined in Sec. Il A that becomes an increas-
that in the clustered regime, the probability to have a largeind function ofr. The most remarkable observation, how-
positive value of\v, is expected to be greater than that of a €Ver: is that for a given |n|t|_al velocity conﬂguratlon_of_ the
correspondingly large negative value pamc]es, not only the locations of the shocks per3|st|ng at
To detect the locations of the shocks by following the laté times are the same for all but also the macroscopic
evolution of P(Auy,t) as a function of time, one can identify Velocity profiles are nearly independentrofif we consider
the locationk of a shock by requiringAvk>C|minjAvJ—|, the nja_\croscoplc_vel_omty prof!le of the I_attlce model with a
whereC>0 is a constant. The choice of the numerical valuecO€efficient of restitutiomr; at a timet; well into the clustered
of Cis arbitrary, and this arbitrariness can be used to tune thE9ime, then for any,>r, (originating from the same initial
minimum value that\v, must have in order to qualify for a velocity confl_guratlon of the partlcla?sthere exists a time
shock. Furthermore, if one defines the instgntvhen the t,<ty, for which the t.WO macroscopic v.elc.)cny' profiles are
system passes from one regime to the other by the minim&l/Most the samesee Fig. 3. Effectively, this implies that for
time where at least one shock becomes visible, then th II'r, the dynamical behavior of the system is identical to that
above requirement can also be used to charactegizef or r=0 at Iate. times. We also observe that at inter_mediate
course, the precise value tf depends on the chosen value MeS; the maximum number of shodked correspondingly,
of C. clusters in the system are observed for0 (see Sec. Il A

In the clustered regime, due to inelastic collisions, theln this regard.

amplitude of the velocity profile within each cluster de-
creases, and the velocities of the particles approach that of
the center of mass of the cluster itself. This process continues
for a while until two neighboring clusters with center-of- ~ The next important question one can ask is if noex-
mass velocitiesV; and Vj,; collide and coalesce and the actly what influences the positions of the shockspriori,
shock separating them disappeastimet, if we number the ~One expects that the locations of the shocks and the long-
clustersj=1,2, ... j;(t) from the left to the right, then such time.dyna.mics of the sy;tem depend on the initial velocity
a cluster-cluster collision takes place onlyMf>V;,,]. Pre- ~ configuration of the particles, as well as on the sequence in
cisely this mechanism is responsible for making the velocityvhich the collisions are performed.
profile of Fig. 2c) evolve to that of Fig. &l). Surprisingly however, the locations of the shocks depend
At very late times, due to periodic boundary condition, @nly on the initial configuration of the particles’ velocities,
only a single cluster survives. Its amplitude also decreases i-9-, two different random collision sequences result in the
time, and the velocities of all particles asymptotically con-Same locations of the shocks. On the other hand, the variant
verge to the center of mass velocity of the whole system. ©f the lattice mode{random or systemafialetermines the
macroscopic shape of the velocity profile inside the clusters.
To demonstrate this phenomenon, starting from the same ini-
tial velocities of the particles, we simulated both the random
and the systematic lattice models and compared the locations
One of the first questions that one can ask for the latticedf the shockgsee Fig. 1
model is what is the effect of inelasticity on the clustering
properties of the system. Clearly, for1, the collisions are
elastic, and upon collision, the velocities of two neighboring
particles are simply interchanged. Such a dynamics cannot The empirical observations in the preceding sections sug-
lead to clustering or any structure formation. gest that so long as one is only interested in the velocity

0 @ &k © OB

C. Dependence on the order of collisions and on the initial
velocity configuration of the particles

B. Dependence on the coefficient of restitution for the random
lattice model

D. Relation between the lattice model and one-dimensional
inelastic gas

041301-3



OSTOJIC, PANJA, AND NIENHUIS PHYSICAL REVIEW B9, 041301(2004)

profile v(k), a close relation exists between the one- ]
dimensional inelastic gas and the lattice model from the fol-
lowing consideration: the dynamics of a one-dimensional in- v
elastic gas for a given initial configuration is completely
deterministic — after any collision, the next colliding pair is
automatically determined by the instantaneous minimal
value of (X.1=X%) / (Vk—vks1), fOr v—vie1>0. In this sense,
one can view the one-dimensional inelastic gas as a variant
of the lattice model too, where the colliding particles are A
chosen in a very complicated manner. Section Il C then in-
dicates that for a given initial configuration of the particles’ k
velocities as a function of the particle index, the locations of
the shocks in the one-dimensional inelastic gas and those in FIG. 4 Aschematjc diagram of the initial velocity profile for a
the lattice model are the same. That this is indeed the case f@W particles to explain the development of shocks.
numerically verified in Fig. 1. the particles, which, roughly speaking, can single out one
In our simulations of the one-dimensional inelastic gas, particies, which, roughly speaxing, ingle out 0
we followed the procedure outlined in R¢L7], namely that S.UCh .Iarge Jump over the surrpund_mg jsmall_velouty. varia-
to avoid the inelastic collapse, the collisions were taken to b jons in a window of(2n+1) lattice sites in thex(k) profile.

elastic when the relative velocities between the neighborin t:):lvmg Zner-]tunlfclh, at_surprlsimglyi cltpse mat((:jhtrt?etyvgatgr; the
particles are smaller than a given cutoff. Our results confir served shock locations at early imes and the initial con-

the existence of “Burgers” shocks in thex) profile [17]. iguration of the particles’ velocities can be fou(gke Fig.

More importantly, we note that for the one-dimensional in- )-
elastic gasthere is an inverse correspondence of shocks an(gh
clusters between this(x) and v(k) profile — each shock in
the v(x) profile [i.e., a large particle density ()] corre-
sponds to a cluster in the(k) profile and the shocks in the
v(k) profile correspond to regions with finite gradients in

Notice, however, in Fig. 5 that not all the large jumps in
e initial configuration of the particles’ velocities have
turned out to be shocks at a later time. Indeed, in general,
whether such an initial large positive jump at a particular
location develops into a shock or not really depends on the
magnitude of the jump itself in relation to particle velocities
v(X). in its immediate vicinity, and as well as on the coefficient of
restitutionr. In this regard, the dependence on the coefficient
of restitution is not difficult to understand, agjuantifies the
“transport of velocity” between two colliding particles. Intu-
A. Development of shocks itively speaking, an inelastic collision between two neighbor-

IIl. ANALYSIS

The lesson that we learned from Sec. Il is that the locaiN9 particles can be viewed as a combination of dissipation

tions of the shocks in this lattice model are essentially detel{thermal|za]}|0|)l and transportk of IvelocmesH thzl lpn!y ;
mined from the initial configuration of the particles’ veloci- transport of velocities can take place. At the ot er limit, for
ties. This immediately gives rise to the following question: r=0, there is no transport of velqcmes 'bu't only dissipation.
how can one predict the locations of the shocks seen at ear@; a result, forr=0, small velocity variations around any

times from the initial velocity configuration of the particles? '2'9€ jump thermalize immediately, leading to an early ap-
As it turns out, most of the shocks observed in the clusPpearance of the clustered regime, and a large number of ini-

tered regime already exist &£0. These are the locations tial J““?PS_ end up beclo_min.g shocks. W.ith. increasingome
marked by large positive jumps in thek) profile between of the initial large positive jumps are eliminated by transport

two neighboring lattice sites &0, surrounded by relatively of velocities, and the clustering regime, with a smaller num-

small velocity variations. To illustrate this point, we present abe[rﬁf selected Shoc'ﬁﬁd CLUStErB ?%ﬁ)e?rs I?ter. h |
schematic diagram for such a velocity profile for a few par- € appearance or tneé shocks at the locations where rela-

ticles in Fig. 4. In the subsequent dynamics at short timest,'vely large positive jumps exist is therefore caused by the

the particles on the right o8 and on the left ofA collide

with each other and “thermaliz€l.e., the velocity variations
reduce due to inelasticity but this thermalization may not
necessarily convert a relatively largeg—v,>0 to vg
-va<<0 quickly enough to make th& and B collide. In
other words, such a large positive jump remains preserved
and may eventually give rise to a shock.

To check if such a scenario is correct or not, one needs to
identify the locations of such large positive jumps in the
initial v(k) profile, and contrast them with the observed lo- g5 5 Correspondence between the coarse grained velocity
cations of the shocks at early times. A convenient way tyofiles 5(k)(n=7) for r=0 for the random lattice model of 1000
single out such jumpgsay, in Fig. 2a)] is to define a2n  particles. Gray curve correspondstte0 and the black curve rep-
+1) coarse grained velocity profin):Er:Q_nvi/(2n+ 1) of resents early shocks. The scale in yhdirection is arbitrary.
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thermalization of the smaller velocity variations around these 2 ' ' ' -
jumps—due to thermalization, the smaller velocity variations )

become even smaller, but the large positive jumps remain vd 13

preserved under the dynamics. In relation to their surround- Do)

ings, the magnitude of these large jumps thus starts to grow
in time. Such a scenario applies independently of the details
of the model, and gives a qualitative explanation for the ob-
servation that starting from a given initial configuration,

0.5F

shocks appear at the same locations indkle profile for @ x %oz o0s 06 03
both variants of the lattice model and as well as for the r
one-dimensional inelastic gafl4,17. Moreover, it also FIG. 6. (8 Comparison of the half-cosine solutigB) (solid

clearly demonstrates that the shock formation “instability” injine) and simulation datdopen circleg the two are completely
thev(k) profile in all these models is a “relative instability” indistinguishable from each otheb) Numerically obtained depen-
and not an “absolute” one. Such behavior has also beetfence ofD(r) onr for the random lattice model. The simulations
found in the(long-wavelengthlinear instability of the mac- were carried out foM =1000. The scale along theaxis for (a) is
roscopic flow field for two- and three-dimensional inelastic arbitrary. D(r) exhibits a singularity at=1, which is in clear dis-
gasegsee Refs[1,4,7] for exampleg. agreement with the mean-field theory prediction.

_ respectively, originate from the events when Kktie particle

B. Cluster dynamics is not involved in a collision, when there is a collision be-

1. Dynamics within a single cluster tween thekth and the(k—1)th particle, and when there is a
collision between thé&th and the(k+1)th particle. Since Eq.

Once the shocks develop, our simulations show that for %2) very simply reduces to

given variant of the lattice model, the velocity profile within
each cluster has the same characteristic macroscopic shape(y,(t + 1)) = (1 — 2pe){(vy(t)) + pe(vi_1(t)) + pe(viar (D)),
For the deterministic lattice model, this shape is simply lin- 3)
ear with a negative slope. Although we cannot provide an
analytical derivation of this shape, if we interpret the dynam-the interesting point to note is that E() is the discrete
ics along the lines that at each updating step of a cluster, tw(both in space and timdorm of the diffusion equation
neighboring particles collide at the location where the;

-y is minimum(which is a mechanism that tries to align all d (kD) ( )0"2<v(k,t)> @)

Uke1— Uk Values to its maximum value within each clugter at Ik

then the linear profile appears to be intuitively reasonable.
P bp y Mean-field theory predictD(r)=pe. One has to keep in

macroscopic velocity profile is smoothly varying, as can begMind however that Eqg. (4) holds only for monotonically de-
seen in, e.g., Fig.(#) [occasionally, flat profiles can be ob- creasing(v(k,t)) as a function of kA similar equation has
served too, but for the time being, we leave them for secalso been found in the one-dimensional lattice model without
Il B 2]. It turns out that the functional form of the smooth the kinetic constrainf20]. _ _ _
macroscopic velocity profile can be obtained through a T0 Solve Eq.(4), the macroscopic velocity profile of a
mean-field approach by averaging over an ensemble of raffJuster at timet, can be generally expanded in a Fourier
dom collision sequence realizations within a cluster, as weeries. Since particle velocities are not transported across the
describe below. boundaries of a cluste#{v,(t))/ sk must vanish at the bound-
The idea behind this mean-field approach is the following:aries of a cluster, and the Fourier series contains only terms
we consider a cluster dfl particles, and denote the velocity *cogwjk]. The amplitude of thgth such term decreases as
of the kth particle at timet, averaged over random collision e ™12t sg that for large values oft—tg), only the
sequences, bfu,(t)). From the very definition of a cluster in  slowest decay modg=1 survives. Hence at long times we
the Introduction, we assume that.(t))—(v,(t))<0 at all  expect(v(k,t)) to be given by
times. Thereafter, as we observe from direct simulation mea-
surements that the probability of collisions between any two (k1)) :A(t)co{—] :A(to)e—ﬂ'zD(r)(t—tO)/Mz os{w—k]

neighboring particle pairs is equally likely, in this mean-field M
approach(v,(t)) is easily seen to satisfy the equation (5)
(vt + 1)) = (1 = 2p){vi(D)) + p[{vi(1)) — e{(vi(t)) The mean-field result5) allows us to compare the half-

~ (U (O + LKD) + e{(via1(D)) = (Y] cosine form ofv(k,t)) with the macroscopic velocity profile
@ of the particles within a cluster, as observed in the simulation
for the random lattice model. This comparison is shown in
Here,p is an effective probability of a collision between any Fig. 6(@—the fact that we cannot distinguish the simulation
two neighboring particles in this mean-field theory and data from the half-cosine shape @f(k,t)) as predicted by
=(1+r)/2. The three terms on the right-hand side of &), Eq. (5) is an indication of how well the mean-field approach
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works to describe the average shape of an isolated cluster. figuration of clusters at timg the mean-field theory of Sec.

addition, by following the dynamics from the simulation, we Ill B 1 provides us with a way to measure the tinle=t

can also obtain an empirical functional formBfr) [shown  +At,,, of the first coalescence of two clusters in the system.

in Fig. 6(b)]. In fact, At,=min; At;, where for each pair of neighboring
There are two features of tH&(r) vsr curve that require clusters(j, j+1) with V;-V;,,;>0, At; is obtained by solving

further elaboration. The first one of them is tii2fr) is an  the equation

increasing function of, indicating that the amplitude of the

clusterA(t) decrea_ses faster asmcreases._ This (_Jbservation Aatoexd- 72D(r) Atj/Mj2+ N
seems to contradict the fact that the dissipation decreases 2 21
with increasingr. The point to notice however is that the +Aj(toJexpl - D(r)AtJ/Mj] =Vj = Vjur. (6)

mean-field approach really describes the time evolution pye to the fact that Eq®6) is transcendental in nature, a
within a cluster in whichv,(t))/ ok <0. From that point of  ¢josed form analytical solution foht; is impossible to ob-
view, the amplitude of the cluster decreases not only fromain, let alone the value aft,,,. Nevertheless, Eq6) pro-

the dissipation, but also from transport of velocities. This isvides us with a glimpse of how complicated it is to theoreti-
easily seen from the fact that after a collision, the ordering otally study the cluster-cluster collisions and coalescence in
the magnitudes of the velocities of the colliding particles arehe random lattice model, and in general, in inelastic gases. If
simply exchanged, i.e., the particle on the right has a highefino clusters andl+1 are the first ones to coales@ time
velocity, which results in a local positive slope in th&k)  t;+At,) in the random lattice model, then a new cluster with
profile. For increasing, transport of velocities becomes M,+M,,; particles and center-of-mass velocityM,V,
more effective, and thus the negative slopedQfy())/dk  +M,,,Vi,1)/(M;+M,,,) is formed. At timet+At,, the shape
within a cluster decays to zero faster. Onlyri1, the ve-  of the new cluster is different from a half cosine, but as the
locities of the particles within an isolated cluster order them-mean-field theory of Sec. Il B 1 suggests, very soon the
selves in an increasing order of magnitude. Howeldr)  shape of the new cluster converges to a half cosine, unless
has a singularity at=1 and ther=1 case cannot be treated the newly formed cluster collides with another one in the
within the scope of our mean-field theory. Second, from themeantime.

way we presented our mean-field approach, it may seem that

ther dependence dd(r) can be obtained through the depen- 3. A “hydrodynamic” description of the random lattice model
dence ofp ande onr. This is actually not true. The mean-

field approach2) neglects fluctuations in the particles’ ve-  So far, we have analyzed the system-wide properties of
locities around(v(k,t)), but in an actual simulation, these ShOCk_S and clugter_s. We have _also_ seen thgt there exists an
fluctuations are very important as they decide the sign offféctive dynamics in terms of diffusion equatiais and(5)
Av(t) =vpe1(t) —vi(t) for the particles within the cluster and within a single cluster. Based on this collected wisdom on

thereby control which collisions are possible and which arén€ random lattice model so far, one can naturally ask if it is
not. possible to express the system-wide properties of shocks and

clusters in terms of an effectivéydrodynamig¢ equation.
It turns out that indeed such an equation can be con-

2. Interacting clusters for the random lattice model .
structed for the random lattice model:

With the background of Sec. Ill B 1, it is now clear that as
time progresses, the amplitude of each cluster present in the Iv
random lattice model at late times effectively decays expo- —=D()[O(-V'v)V'v -0O(-V1v)Vv], (7)
nentially as~exd -m?D(r)(t—ty)/M?]. Such a decay brings at
the velocities of the particles within a cluster closer and
closer to the center-of-mass velocity of the cluster itself. Lewhere® denotes a unit step functioy "v),=vy.1—vy, and
us assume that at tintg> 1, there arg, number of clusters (V7v)=vy—vy; are the discrete gradients operating to the
present in the whole system of the random lattice model. Ifight and left, respectively, anél it the discrete time gradi-
we number these clusters ysuch thatj=1,2,... j; and ent. It is important to stress that in a numerical implementa-
denote the number of particles within the clusters, the amplition of Eq. (7), all pairs of particles with negative relative
tudes of the clusters, and their velocities of their center ofvelocities collide simultaneouslyin a unit time step. The
masses, respectively, By;, A;, andV;, then with increasing main difference between the numerical implementation of
time, we observe the following dynamics. Eq. (7) and the random lattice model lies in the order of the

(i) WhenV,_;<V;<Vj4, the shocks on the left and collisions, but in the light of the previous results, we expect
on the right of thegth cluster cannot, respectively, be smaller to find the shocks at the same locations. Moreover, inside a
thanV;-V;.;>0 andV;,;-V;>0. In that case, the ampli- given cluster, Eq(7) reduces to Eq(4), so that the cluster
tudeA; simply decreases to 0, forming a “flat” velocity pro- velocity profiles should be the same as in the random lattice
file (see, e.g., Fig.)3 model.

(i) On the other hand, whewi;>V;,,, the magnitude Indeed, we find that the macroscopic velocity profile ob-
of the shock between thgh and the(j+1)th clusters de- tained numerically from Eq.7) compares very well with the
creases to zero, and the two clusters coalesce together a&stual computer simulation results of the random lattice
form a new bigger cluster in a finite time. For a given con-model(see Fig. 7, as expected.
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i robust manner. In order to predict the locations of the shocks,
we have demonstrated a procedure to process the initial ve-
locity configuration data of the particles, and this procedure
works equally well also for the one-dimensional inelastic gas
[14,17. The coefficient of restitution does play a role to
decide which of the large jumps in the particles’ velocities at
early times yield shocks, but at late times, the macroscopic
velocity profile for a given model with a given initial con-
figuration of the particles’ velocities is independent of the
coefficient of restitution.

Thus, we observe that in terms of detailed structure for-
mation, systems with any<1 “flow” towards the sticky
0 — limit r=0. Such “universality” has been found in RgE7] in
k terms of global quantities, while our results suggest that a
broader universality holds for microscopic quantities, such as
the locations of shockevhen the same initial velocity con-
figuration is considered

In addition, for the random lattice model, we have also
studied the dynamics of an isolated cluster and cluster-cluster
collisions in detail and obtained an effective hydrodynamic
equation. We hope that the analyses presented here can be
successfully used to study coarsening problems in realistic
granular gase€.e., in two or three dimensions

In this paper, we have extensively studied structure for-
ma'tion and their dynamics in a one-dimensional inelastic_ ACKNOWLEDGMENTS
lattice model for granular gases. These structures appear in
the form of clusters separated by shocks. The locations of the S.O. and D.P. are financially supported by the Dutch re-
shocks in this lattice model at early times are decided fronsearch organization FOMFundamenteel Onderzoek der Ma-
the initial configurations of the particles’ velocities in a very terie).

FIG. 7. Comparison of the macroscopic velocity profielid
curve predicted by Eq(7) with the corresponding actual simula-
tion data(open circleg of the random lattice model far=0. The
simulations were carried out for 1000 particles and the Iar@@lst
—vk2| Okq, ko have been scaled to unity both for the actual simula-
tion data and the solid curve.

IV. DISCUSSION
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